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On singular values of Hankel operators of finite rank

W. B. Graggt and L. Reichel t

Abstract

Let H be a Hankel operator defined by its symbol p = ;r/x where x is a monic polynomial of degree
n and ir is a polynomial of degree less than n. Then H has rank n. We derive a generalized Takagi
singular value problem defined by two n x n matrices, such that its n generalized Takagi singular
values are the positive singular values of H. If p is real, then the generalized Takagi singular value
problem reduces to a generalized symmetric eigenvalue problem. The computations can be carried
out so that the Lanczos method applied to the latter problem requires only O(n log n) arithmetic
operations for each iteration. If 7r and x are given in power form, then the elements of all n x n
matrices required can be determined in 0(n2 ) arithmetic operations.
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1. Introduction

Let H = [rj+k]',=0 be a be a Hankel operator defined by its rational symbol p = 7r/x, where

n-1 n

(A)= lrj ,A and X(A)"= Z x , x =1. (.1)
j=O j=O

We assume that r and X have no common zeros. The elements 17 of H are then given by

P(A) = r(A) I A--1" (1.2)
x(A) __O

In order to simplify our presentation, we assume that the zeros {Ak}k=l of x are distinct. How our
formulas need to be modified in order to remove this assumption is discussed in Remark 1.1 below.
Hence p has a partial fraction decomposition

n

P(A) A - k (1.3)
k=1

Expansion of the right hand side of (1.3) into a geometric series, and comparison with (1.2), yields

n

1= Ck;A (1.4)

We now express (1.4) in matrix form. Let

A:= diag[aci, C 2 ,... Yn] C' ', (1.5)

A:= d'aglAi,A 2 ,... An] . C n, (1.6)

and introduce the Vandermonde matrix

VO:= ['+11.-=o . Cnxn. (1.7)

Define
V := V ,  (1.8)

where
Vi. := YoA in , j >_1 19

Then (1.4) can be written as
H = VA VT. (1.10)

Let 2 denote the vector space C,' equipped with the Euclidean norm.
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Proposition 1.1. H : 12 -+ 12 bounded * iAkl < I for I < k < n.

Proof. The proposition holds independent of the multiplicity of the Ak. In the present proof we

assume that the Ak are distinct. The proof for confluent Ak is commented on in Remark 1.1.

Let e = [ej]' 0 e C' be the axis vector with E0 = 1. Then

h = ['i7j=o := He E 12 =17j -- 0 as j -- oo

IAkI < 1 for 1< k < n,

where the last implication follows from (1.4).

Conversely, assume that IAkI < 1 for 1 < k < n. Then by (1.8) - (1.10) we obtain

= IIAll 2 11VoIl2l(I - (AHA))-'l 21 . a

We assume henceforth that IA1,1 < 1 for 1 < k _< n. Introduce

U:=VVo', (1.11)

H0 := VoAVoT. (1.12)

Then H0 has rank n. We note , by comparing (1.12) with (1.10), that H0 is the leading principal

n x n submatrix of H. From (1.10) - (1.12) it follows that

H = UHoUT. (1.13)

The leading n x n submatrix of U is I,, the n x n identity matrix. U therefore is of rank n and
can be factored

U = QR, Q ( G o1n, R c Cn:n

where QHQ = In and R is a nonsingular right triangular matrix. We obtain

a+(H) = a+(QRHoRTQT) = a(RHoR T ), (1.14)

where a denotes the set of singular values and a+ denotes the subset of the positive ones.

The n x n matrix RHORT is complex symmetric. Takagi [Tall, [Ta2] showed the existence of a

complex symmetric singular value decomposition

RHoRT - W'WT, WE Cnx, E = diag[aU 2 ,... ,], (1.15)

where WHW = I, and aj > 0 are the singular values of RHORT. In Section 2 we present an
elementary proof of the existence of this decomposition. Let W = (, w 2 ,... w 1[, w, c C". Then
(1.15) can be written as the Takagi singular value problem

RHoRT- wk =bjk, 1<j,k<n, (1.16)

3



where the bar denotes complex conjugation and 5ik is Kronecker's b function. The problems (1.15)
- (1.16) could be solved by the algorithm described in [BGG], but this would require RHoRT to be
explicitly computed. In order to avoid these matrix multiplications we let v. := RH w and obtain
from (1.16) the generalized Takagi singular value problem

HoVy" = (RHR)-lvou, Vff(RHR)-vk = blk, 1 < j,k < n. (1.17)

The solution of (1.17) requires (RHR)- ' to be known. In Section 3 we show that

(RHR) - = I - BoBg, (1.18)

where B 0 e CX" ' is a triangular Toeplitz matrix. The elements of Bo and Ho can be determined
from the coefficients of 7r and X in O(n log n) arithmetic operations by the fast Fourier transform
(FFT) method. This is demonstrated in Section 4. Section 5 shows that

RHR=TMoTI, T 1, MO Cflxf, (1.19)

where T, and M0 are Toeplitz matrices, and describes a numerical scheme for the computation
of this factorization from (1.16) in 0(n 2 ) arithmetic operations. We also present a Hermitian
factorization of RH R into n x n triangular matrices.

The factorization (1.19) may be of interest for the numerical solution of (1.17). Assume that
the coefficients of ir and X are real valued. Then Ho, (RHR) -1 C fnx,, and (1.17) reduces to
a generalized symmetric eigenvalue problem. The Lanczos method ([Pa, Section 15.111, [ER])
would appear suitable for solving this eigenproblem for the following reason. Let C C Cn be a
Hankel or Toeplitz matrix and let v . '" be arbitrary. It is well known that Cv can be computed
in 0(n log n) arithmetic operations using FFTs. Hence Hov, (RHR)-lv and (RH R)v can be
computed in 0(n log n) arithmetic operations, where we use (1.18) - (1.19). Each iteration of the
Lanczos algorithm given in [Pa, p.324] therefore requires only 0(n log n) arithmetic operations.

The computation of singular values of H is important in Hankel norm approximation problems of
systems theory, such as the model reduction problem [Gl]. The approximation of functions by the
Carathdodory - Fejir method yields another application [GuJ, [TrI.

Other methods for reducing the singular value problem for H to a finite dimensional one have been
described by Kung and Gutknecht [Gu] and Young [Yo]. These methods, however, do not preserve
symmetry. Moreover, Young's approach requires generally O(n 3 ) arithmetic operations to compute
the matrices required.

Remark 1.1. Formulas (1.3) - (1.8) and the proof of Proposition 1.1 require distinct Ak. This
restriction can be removed. Assume first that A1 = A2 = ... = A. Then (1.3) - (1.4) have to be
replaced by

() k(1.3')

17i1
= Z (( )Y] (1.4')

k=1 .=o

In (1.5) A has to be substituted by the upper triangular Hankel matrix

A= [a]*k+1J!o f Cn; a,:=0, p>n.

4



The matrix A in (1.6) has to be replaced by the Jordan matrix with all diagonal elements equal to
A, and all superdiagonal elements equal to one. The matrix Vo in (1.7) need be replaced by the
*,onfluent Vandermonde matrix. For instance, we obtain for n = 3

A = A, 1 , Vo = A, I .
A, A2 2AI1

With A, A and VO modified as described, we define Vj and V by (1.8) - (1.9), U by (1.11) and
H0 by (1.12). Then (1.10) and (1.13) hold and H0 is the leading principal n x n submatrix of H.
Also (1.14) - (1.19) remain valid. Proposition 1.1 can be shown by replacing (1.4) by (1.4'), and
by bounding the sum

:0

where A now is a Jordan matrix. This sum is bounded if JAI I < 1, and the proposition remains
valid.

In general, when the Ak are of arbitrary multiplicity, A in (1.5) has to be replaced by a block
diagonal matrix, where each block is an upper triangular Hankel matrix. The blocks are of the
same sizes as the multiplicities of the Ak, and the number of blocks equals the number of distinct Ak.
A in (1.6) is replaced by a Jordan matrix with Jordan boxes of the same sizes as the multiplicities
of the A,, and the number of boxes equal to the number of distinct Ak. V in (1.7) is replaced by
an appropriate confluent Vandermonde matrix. With these changes (1.10) - (1.19) are valid, and
so is Proposition 1.1. We omit the details since the numerical computations are independent of the
multiplicity of the A,. a

5



2. The Symmetric Singular Value Decomposition

In this section we present an elementary proof of Takagi's theorem, i.e. we show the existence of
a symmetric singular value decomposition of a complex symmetric matrix. Let C = CT f CfXn,

and define A, B . IR'+  by C := A + iB, i:= V-1. Then A = ATand B = BT, so the matrix

:=[B -A

is real and symmetric. Let {oj}>=1 be the positive eigenvalues of C and form

E :- diag[al,a2 , ...,r].

Let

with
U,Vc R xr'

and
UTU + VTV -.

Write (2.1) as SAU +BV UE (2.2)
BU - AV= V

and note that (2.2) also can be written as

{ AV + B(-U) = V(-E)
BV - A(-U) = (-U)(-E),

i .e . [ ] ] [ ]

with
VTV + (-U)T(-U) = Jr.

Hence C has at least r negative eigenvalues. We could also have let a3 be the negative eigenvalues of
C and then (2.3) would have given us positive ones. We therefore may assume that ±rl, =2, ... ,

are all the nonzero eigenvalues of C.

Since eigenvectors associated with distinct eigenvalues of a real symmetric matrix are orthogonal,
we have

The spectral resolution of C is thus

=U 
V

_BA V U _ _U I
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which yields
A = UEUT - VEVT

B= VrUT + UrVT.

Therefore
C = A + iB = UEUT - VZVT + i(VFUT + UrVT)

= (U + iV)F,(UT + iVT) = WEWT = >,GkWtV,
k=1

where
U +iV =: W = [w, W 2 , ...,W], Wkhe .

Moreover

WHW = (UT - iVT)(U + iV) = (UTU + VTV) + i(UTV - VTU) = Jr.

If r < n then one may replace E by

Eo diag[a'l,a2, .... , , -, ,01 i nxn

and W by
Wo =[W1,W2,,...)WrWr+,.. 1 Wn C ,

where Wr+1 ,...,WE C are chosen so that WHWo = In.
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3. A S'zlple Expression for (RHR)- 1

In this section we derive (1.18). Introduce the Frobenius matrix

F := [e2 , e3 , ... , en,-]f "CnXfl,

where

ei = [ 61 j, 6 2,,..., ,j 1  1? ', 2 < j _<n, (3.1)
f := [xojxjj,...,jxn-_]TC Cn.

Then F is the companion matrix of X and

FTVo = VoA. (3.2)

Throughout this section V0 and A are defined by (1.6) - (1.7) if the Ak are distinct. For confluent
Ak we modify V0 and A according to Remark 1.1. The following lemma shows that

G := RHR (3.3)

satisfies a Stein equation. This will enable us to obtain a simple expression for G- 1 by an application
of the Sherman-Morrison- Woodbury formula.

Lemma 3.1. G is the unique solution of the Stein equation

X - F nXF H = I,, Xf C " × n. (3.4)

Proof. By (1.8), (1.9) and (1.11) we obtain

-z

RHR= UHU = Z V(A nk)H VoHV°AVnkVo, (3.5)
k=O

and (3.2) yields now
00

G = P FPk(Fnk)H. (3.6)
k=O

The series in (3.5) - (3.6) converge because jAkI < 1 for all k. Substitution of (3.6) into (3.4)
shows that G solves (3.4). The unicity follows from 1Akj < 1 for all k. The latter can be seen by a
similarity transform of Fn to Schur triangular form. a

Introduce the cyclic downshift operator in C2,

E (e2 [Ca 3 .... , ,en,,el] . c 2 nx 2 n,

where
, 1 ,6 2 , ... v,. I T .c ?2n. (3.7)

Let
t = Xo,Xl,...,x ,,O, ... , oI C ,2,,



and define the Toeplitz matrix T of parallelogram form

T :=--[t, Et, E 2t, ... , En - 1t]. C 2 X n .  (3.8)

Let To be the leading n x n submatrix of T, and let T, be the trailing n x n submatrix of T. Then
To is a left triangular Toeplitz matrix, and T, is a unit right triangular Toeplitz matrix.

Example 3.1. Let n = 3. Then

Xc

T X2 X2 Xo To=X Xo 1 X3 X2 
X3 X2 X2 XI Xo X3

XX33

where we note that X3 = 1. S

Lemma 3.2. Let To and T1 be defined as above. Then

TH To + TH T1 = ToT 0 + T T1H. (3.9)

Proof. Let N := THT = ToHTo + T'T 1. We first show that N is a Toeplitz matrix. Let ej be
defined by (3.1). Then by (3.8) we have for 1 < j, k < n,

er' Nek ----eTHT ek = tH(EH)i-Ek-t = tHEk-t,

where we have used that E H E - '. We next define the reversal matrix

J :-- en,en-l, ...,el] . i nxn.

Toeplitz matrices are counter symmetric, i.e. N - JNTJ. Using that N is counter symmetric and
Hermitian yields

ToHTe + THT1  N = N JNTJ = J = J(To'To + TIT')J

= JTOT J -JoJ + JTTJ •  J - ToToH + T1 Tf.

The next lemma presents a Gaussian factorization of F' in terms of To and T1 . This will be used
together with Lemma 3.1 to express G - ' in terms of To and T1.

Lemma 3.3.
F" = -TT -1. (3.10)

Proof. We first show that

[TjO,TI A =0. (3.11)~Vh"

Let ej be defined by (3.7) and assume for the moment that the Ak are distinct. Then-]
CT ITO,T I ek = X(Ap) -1  (3.12)

[Vo A J



and the right hand side vanishes for 1 < j, k < n. If the Ak are confluent, then the right hand side
expression of (3.12) contains derivatives of x(A) evaluated at Ak. The right hand side of (3.12),
however, still vanishes and (3.11) holds.

We now write (3.11) as
TOTVo + TT V0 An = 0

and apply (3.2). This shows (3.10). U

We are now in a position to show (1.18). By (3.4) G satisfies

G = I + FnG FnH

and an application of the Sherman-Morrison-Woodbury formula yields

G - ' = (I + FnG FnH)- 1 = I- Fn(G - 1 + FnHFn) - FnH. (3.13)

We now determine an expression for
Y I-G - . (3.14)

Substitute Y and (3.10) into (3.13) to obtain

Y = To(TORTo + THT, - THYTI)-IToH.  (3.15)

In order to determine a simple expression for Y from (3.15) we need the following observation,
which is also central to Section 4. To and T TH are both left triangular n x n Toeplitz matrices.
Multiplication of To with T -H can be identified with polynomial multiplication, see [Hel, Section
1.31 and Section 4. Since multiplication of polynomials commutes, we obtain

ToTTH = TTHTo. (3.16)

From the correspondence between polynomials and left triangular Toeplitz matrices it also follows
that ToTTH is a left triangular Toeplitz matrix.

Lernnia 3.4. Equation (3.15) has the unique solution

Y - T HfoToHT -1 = ToTT 1T -To. (3.17)

Proof. Unicity follows from (3.14) and that (3.4) has a unique solution. From (3.16) we obtain

Ti-HToTH T I = To T T ITo. (3.18)

Now substitute
Y = THToToHTI

into (3.15). We obtain

T H ToTH T I = To(ToH To + THT TTo H)lToH . (3.19)

10



An application of (3.9) reduces (3.19) to (3.18). The latter has already been shown to be valid.
Therefore (3.17) solves (3.15). a

Let Bo := ToT T = TJTo. 
(3.20)

Then Bo is a left triangular n x n Toeplitz matrix. By (3.14) and (3.17)

G-' = I - ToBo = B-0o.

From (3.3) it now follows that
(RH R) -  I - BoBo'. (3.21)

11



4. Computation of Ho and B0

We summarize some results in [He 1, Section 1.3] and [He 2, Section 13.9] in order to show that the
elements of H0 and B0 can be computed in O(n log n) arithmetic operations from the coefficients
X, of x and iri of 7r, see (1.1). To a polynomial or power series

n-1

E:= X3 + 0
j=0

we associate the left triangular n x n Toeplitz matrix
Z [ ,~j-10

S - j,k=0 j ---- 0 for j < 0,

and we write f -* Z. If C(A) is a polynomial and X a left triangular n x n Toeplitz matrix such
that C -+ X, then it is easily seen that C --, ZX. In particular, ZX is a left triangular n x n

Toeplitz matrix. From C = C and C --+ XZ is follows that ZX =: XZ.

Assume that to :A 0 and let 1/ -- I Z'. Then 1/ • -- I, Z'Z and ZZ'. We obtain Z' = Z - ' and

therefore Z - ' is a left triangular Toeplitz matrix.

Example 4.1. We have X - To. Let

:(A) :An -(/A) = Zy"'A'. (4.1)
j=0

Then T - TPH and the Blaschke product

X - ToT "  -0 (4.2)

Now let C(A) and 6 (A) be arbitrary polynomials such that (O) : 0. Henrici [He2, Theorem 13.9e]
shows that the first n coefficients in the MacLaurin expansion of (A)/f(A) can be computed in
O(n log n) multiplications. The proof uses FFT. It is easily seen that the number of additions also
is O(n log n).

From Xn = 1 and (4.1) we obtain R(0) $ 0. Hence, the first n terms in the MacLaurin expansion
of X/j can be computed in O(n log n) arithmetic operations. By (4.2) therefore ToT-f = Bo can
be computed in O(n log n) arithmetic operations.

Because A"X(1/A) # 0 for A = 0, we can compute the first n terms in the MacLaurin expansion of

A"X(1/A) -(

j=O

in O(n log n) arithmetic operations. This shows that Ho can be computed in O(n log n) arithmetic

operations.

12



5. A Factorization of RHR

It follows from (3.3) and (3.20) - (3.21) that

G - 1 = (R HR) - 1 = I- Bo B H = I- T-HToToHTj 1, (4.1)

and therefore

THG-'T, = Tf'T 1 - ToTof =: Mo 1 . (4.2)

The expression defining M6-1 is a Gohberg-Semencul formula for the inverse of an n x n Toeplitz
matrix, see, e.g., [Io, Theorem 18.2, p. 152]. We denote this Toeplitz matrix by Mo. From the left
hand expression of (4.2) and the nonsingularity of T1 and R it follows that M 0 is Hermitian and
positive definite. The desired factorization of RHR is

RH R = TI Mo TH .

We will now show how M 0 can be computed. The computation involves running the Levinson
algorithm backwards.

Consider the related Gohberg-Semencul formula, see, e.g., [Io, Theorem 18.1, p. 148] or [AG],

H

Xn Xn- . Xo Xn Xn-1 ... XO

Xn-1 Xn-1

XnL Xn J

(4.3)

0 0 H

X0 X0
X1 X1

Xn-1 ... X1 XO 0 Xn-1 ... X1 XO 0

where the four triangular Toeplitz matrices define the inverse of an (n + 1) x (n + 1) Hermitian
Toeplitz matrix. Denote this Toeplitz matrix by MI. Then Mo is the leading principal n x n
submatrix of M 1 , see 11o, Theorems 18.1 - 18.2].

Let R, := [PJIn' k=o C C(n+i)x(n+i) be the unit right triangular matrix, and let
D1 := diag[6o,6i,...,5,] be the diagonal matrix such that

R"' M, R1 = D 1 . (4.4)

13



Given M 1 = [[ji- ]k~k..=o, the matrices R1 and D1 can be computed by the Levinson algorithm, and
by comparing R1 with (4.3) one finds that

Pjn = Xi, 0 <j _: n and 6n = Xn,

see, e.g., [AG]. We now apply the recursion formula in Levinson's algorithm backwards in order
to determine R, and D1 from the last column of R1 and 6,. Then the recursion formula is used
forwards to determine M0 . We will also obtain a Hermitian factorization of RHR into triangular
matrices.

Backward Levinson algorithm

input: [pi7].._0, 6n ; outpu L: R 1 , D1 , Schur pararT.-ers {-j~yn__ of MO;

for k :=n,n- 1,n-2,...,J do

7Yk := Pok; Ph-1,k-1 := 1;

for j := 1, 2,..., integ, r part(k) do

solve for P-,k-1 and Pk-i-j,k-i the linear system of equations

bk_ := (6k/(1 - hYIk))/(1 + 1Ykj);

Levinson recursion for computing Mo j,k=o

input: R1, D1 , {-t).=1; output: (,,,)n-1;

Uo :- 60; UIl := -6o ;

fork:= 1,2,...,n- 1 do

Hence M 0 , R1 , and D1 are computed in O(n2 ) arithmetic operations from the coefficients of X. Let
Ro and Do denote the n x n leading principal submatrices of R, and D1 respectively. Similarly to
(4.4) we have

ROMo Ro = Do. (4.5)

Because Mo is positive definite, so is Do. D1/2 can therefore easily be computed. WN, obtain from

14



(4.1) - (4.2) and (4.5), with A := Do/I2 o- 1,

RH R = (AT 1 )T (Tr). (4.6)

The right hand side of (4.6) is a Hermitian factorization into triangular matrices. It caia be computed
in O( n2I arithmetic operations from the coefficients of X.

15
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